
ON FINITENESS CONDITIONS IN TBE MECBANICS 
OF CONTINUOUS MEDIA. STATIC PROBLEMS OF 

TEE TEEORY OF ELASTICITY 

(OB USLOVIIAKB KONECBNOSTI V MEKBANIKE SPLOSBNYKB SBBD. 

STATICBESKIE ZADACHI TEORII UPRUBOSTI) 

PYY Vo1.24, No.2, 1960, pp. 316-322 

0. I. BARENBLATT 
(Yoscow) 

(Received 17 November 1959) 

In different areas of the mechanics of continuous media one encounters 
in a number of cases the situation where the solution of the basic 
differential equations of the problem, which satisfies the initial and 
boundary conditions. is not unique but is only correct up to a constant 
parameter (sometimes up to several such parameters or even up to one or 
several functions of the independent variables of the problem). In order 
to determine the values of these parameters and generally undetermined 
elements of a given problem, one resorts to additional conditions, which 
sometimes are stated in the form of new independent hypotheses (postu- 
lates) on the finiteness [boundedness ] of velocities, stresses, etc., 
supported by additional physical considerations. 

One can cite many examples of problems of this kind. One of them is 
the problem of flow past a wing with a sharp trailing edge where one 
uses the Zhukovskii-Chaplygin condition on the finiteness of the velocity 
at the trailing edge of the wing in order to determine the unknown con- 
stant parameter, which is the circulation. In addition to that, the group 
of similar problems contains the contact problem of the theory of elas- 
ticity, and, in particular, the problem of the penetration of an elastic 
body by rigid punches [dies ] where one can use the Yuskhelishvili con- 
dition on the finiteness of stresses at the contour of the contact area 
to determine this unknown contour. We should also note the problem of 
the theory of cracks in brittle bodies, where one uses the Khristianovich 
condition on the finiteness of stresses at the crack contour in order to 
determine the unknown contour of the crack boundary. 

One can encounter, however, cases where it is not possible to form- 
ulate a condition, which would yield a unique solution, in the form of 
a finiteness requirement on one or another set of quantities. In these 
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cases the determination of a unique solution is very difficult. Such a 
situation arose, for instance, in the problem of the stationary disnlace- 
ment of one fluid by another in a porous Hele-Shaw shell, which was 
studied recently by Taylor and Saffman. 

It appears to be possible to establish a general form of additional 
conditions that yield a unique solution in similar cases. These condi- 
tions, and. in particular, all above-mentioned finiteness conditions are 
not independent physical hypotheses. They are obtained from fundamental 
integral principles of mechanics just as properly as the basic differ- 
ential equation and the boundary conditions. The ability to obtain addi- 
tional conditions, which yield a unique solution, from integral prin- 
ciples of mechanics is, obviously, a fact of completely general value. 
This fact once again points out the advantages of formulating problems 
of mechanics of continuous media in terms of integral principles. 

Xn the present paper such a study is made for static problems of the 
theory of elasticity*; in a subsequent paper this study will be conduct- 
ed in detail for hydrodynamic problems and dynamic problems of the theory 
of elasticity. 

I. The general fom of sdditio~a~ conditions in static 
problems of the theory of elasticity. Now, let us assume that the 
differential equations and boundary conditions of the problem determine 
the equilibrium state of the elastic system under study in a non-unique 
fashion, i.e. the solution contains some constsnt parrrneters or func- 
tions of independent variables of the problem which reatain undetermined. 
Let us denote the set of the uadetermined elements of the solution by M; 
the set of the undetermined elements of the solution varied by some 
allowable BWIW shall be denoted by M + 6 I. Let u represent the dis- 
placement field of the studied elastic system, which corresponds to some 
fixed M; S,n is a variation of this field according to the geometric con- 
straints inposed upon the system and corresponding to the ~811163 fixed M, 
and S,u is a variation of the displaceuuztt field corresponding to the 
variation SM of the set of undetermined elements. 

lhe state characterized by the displacement field u + S1u + “#I is a 
possible state of the elastic system. The principle of virtual displsce- 

* During a discussion of this paper at a seminar in hydroaechanics at 
MSU, after it went to press, L.I. Sedov kindly informed me that in 
his course of lectures a general thermodynamic study of arbitrary 
models of elastic bodies considering additional physico-chemical 
parameters is being undertaken, where the values of these parsRefer 
are also obtained from the conditions of the extremum of the free 
energy or the internal energy of the system. (Note added in proof). 
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merits, which represents the most general fo~lation of the f~d~nta~ 
law of statics of elastic systems, can be written in the form 

6W---A=0 (f.1) 
where 6W is the variation of the elastic potential W of the system, and 
SA is the variation of the work of the external forces for a given 
virtual I a&issibleI state of the elastic system. Relation (1.1) can 
be written in the form 

(1.2) 

where 6,W and li1A are, according to the previous notation, variations 
corresponding to the variation Islu of the displacement field with a 
fixed M, and 6,W ands.# are variations corresponding to some variation 
6Y. Xn view of the independence of the variations alu and 6M, the follow- 
ing relations follow from (1.2): 

6,W - &A = 0 (1.3) 
6,W - 6,A = 0 (1.4) 

From relation (1.3) we obtain in the usual manner [l 1 the differ- 
ential equations and boundary conditions of the problem, which corre- 
spond to the arbitrary fixed set of undetermined elements M. But if the 
field satisfies the differential equations of equilibrium and the bound- 
ary conditions then Clapeyron's 111 theorem holds true, according to 
which 

2W=A (1.5) 

for arbitrary M, from which it follows imnediately that 

I&on substitution of f1.6) 

This relation is a general 

26,W = 6,A (1 .Q 

into (1.4) we obtain 

6,W=O (I.71 

condition that determines the set of the 
undetermined elements of the problem. Thus, that set of undetermined 
elements M is concretely realized for which the elastic potential of the 
system takes on an extremum value. In particular, if the solution of the 
differential equations with the corresponding boundary conditions appears 
to be determined correctly up to a finite number of constants cl, 
then we obtain from condition (1.7) 

a**, Cnr 

8W 
gq= 0 (i = 1, . . . ( n) (1.8) 

In the general case, when the state of the elastic system is also 
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characterized by a system of functions of independent variables of the 

problem fl, . . . , f,, which cannot be determined from the differential 
equations and boundary conditions, one has to adopt from relation (1.7) 
for their determination direct methods of variational calculus or inte- 

grate the variational Euler equations. 

lhe set of undetermined elements is usually intimated by the condi- 

tions of the studied problem. However, one should note that the choice 
of the indicated set is substantially related to the chosen idealized 

scheme [model 1 of the phenomenon so that for an unfortunate choice of 

this idealized scheme, the condition of the extremum (1.7) can give no 
actually realizable states. Such a state of affairs is, in general, 

characteristic for any general theoretical approach in problems of 

mechanics (and not only mechanics), in particular, for instance, for 

dimensional analysis. It is appropriate to emphasize once more that no 
general theoretical approaches can do without a preceding stage of 

establishing an adequate model of the phenomenon to be studied. 

2. Ihe condition of the finiteness of stresses in the con- 
tact problem. Now we shall illustrate the general results obtained by 

some examples which are of independent interest. Let us study the prob- 

lem of the penetration of an elastic half-space by a rigid punch with a 

curved base in the absence of friction forces. ‘lhis problem was studied 

by Muskhelishvili (see [ 2 1, Sect. 115). 

lhe punch, generally speaking, is non-symnetric so that the area of 

contact is given by the coordinates of its ends x = a and n = b > a. ‘Ihe 
conditions of finiteness of the stresses at the edges of the contact 

area x = a and x = b are of the form 12 1 
b b 

s 

f’ (0 dt tf’ (t) dt 2 (1 - VZ) PO 

a V(b-_) 
=o, 

1 /(b-t)(t--a) =’ E (2,‘) 

where y = f(x) is the equation of the base surface of the punch, and P, 

is the resultant force which presses the punch against the body. Let us 

derive conditions (1.81, which are applicable to the problem studied. 

The pressure under the punch, aside from the dependence upon the choice 

of a and b, is given by the following relation [ 2 1 : 

P w = 
G 

-h Z/c (1 - u”) V/o (T) 

’ 1/Q(t)f’Wdt +_ 
t---2 (2.2) 

a 

where the integral is understood in the sense of its principal value, 

and 

Q(X) = (6 - CC) (z - a) 

One can show that the displacement under the punch is given by 
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2, (x) = j (5) + c (2.3) 

where c is a constant determined from the relation 

c = 2 (1 - w, 
xl!? 

In +-I_+"s f(Cl+ c,cosh)dh, C1 = &-+), 

0 

C2 = -$- (0 - a) 

After a number of transformations the expression for the elastic 

potential can be written in the form 

u = ;- ‘;lp (x) 2: (x) dx = + P,c -1 2 [ j (cl + c2 cos A) dh - 
.i 

a 0 

sin $ (h - 0) 
- 

f(C1 + C? CO5 h) /’ (cl $ c2cos 0) sin h sin 8 In -- 

sin$(h+O)dhde 

(2.4) 
where we used 

x = Cl + c2 cos 8, t = Cl f (2.2 cos A (2.5) 

Let c1 and c2 be the determining constant parameters so that, in view 

of (1.8), the following conditions can be fulfilled: 

(2.6) 

Differentiation of (2.4) and integration by parts yields 

x x 
21; Ec2 -_= 
dc1 2a (1 - r2) 15 

- j’ (~1 + c,cosh)dh 11s j’ (E, -+- c2 cos ‘h) cos k dh 
I 

(2.i) 

0 0 

x x 

au EC.2 _=- 

.dC? 4x (1 - 9) !S 
i’ (6 t cz cm A) dh 

3 [s 
2 _t f’ (cl + cy cos h) cos hdh12} + 

0 0 
x 

4 5 [ j’ (cl + c2 cos A) cos hdh - 
PO2 (1 - I?) 

x .I XCIE (2.8) 
0 

From this and from conditions (2;s) we find 

Changing the variable to t by means of Formula (2.5) leads to the 
relations (2.1). lhus, the conditions of the finite stresses at the 
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edges of the contact 
statements developed 
displacements. 
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area are obtained here corresponding to the general 
above, originating from the principle of virtual 

3. Ibe condition of the finiteness of stresses in the 
crack problem. Now we shall study the problem of the straight crack 
in an infinite body with an arbitrary tearing force applied symmetric- 
ally to the crack line under the conditions of plane strain*. ‘Ihe line of 
the crack and its extension will be chosen as the n-axis so that the 
ends of the crack are at x = u and x = b. Let the tearing forces, which 
we shall assume to be applied at the surface of the crack**, and the 
cohesion forces acting iu the end-region of the crack produce at the 
surface of the crack normal stresses which are distributed according to 
the law0 =- 
crack areYequal 

g(x), while the shear stresses at the surface of the 
to zero. hs we showed earlier I3 1 , in order to satisfy 

the condition of finite stresses at the ends of the crack and to have a 
smooth joining of the opposite edges of the crack it is necessary and 
sufficient to satisfy the following conditions at the edges: 

(3.1) 

We shall show that these conditions follow from conditious (1.8). 
when using the results from 13 I one can show that the nomal displace- 
ment of the points on the surface of the crack is 

(3.2) 

where B is You& s modulus, v is Poisson’s ratio of the material, md 
the angle 8 is given by x = l/W + a) + l/2(6 - a)cos 8. The expression 
for the elastic potential becomes 

l 

l * 

The following discussion (Sec.tions’ 3 and 4) refers, strictly speak- 
ing, to the case of reversible cracks. 

This simplification does not reduce the generalit of the armljsis 
since the case in which the tearing forces are applied inside the 
crack can be easily reduced to the one studied here 13 1. 
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++(b-~2)eosh sinhln 
I 

sin$(h - 0) 

sin+@+@) 
dh (3.3) 

We shall choose the coordinates of the ends of the crack a and b as 
the determining constant parameters, and then, because of (l.8), the 
following conditions should be satisfied: 

Differentiation and integration by parts, leaving out intermediate 
calculations, yields 

8W 
aa= 

2(i-v3)(6-a) 7c 
ZE 0 t 

g --&(b+a) +~(b--)cosBlsin~~de~~= 
0 

2(1-l+ 
= xE (6-u) 

0 

(3.5) 

iiW 
ab= 

2(i--**){6-a) x 
as is [ 

g $(b+a)$-~(b-~a)eos8],,,z$de~= 
0 

2 (1 - 9) 
= zE(b-a) (j,,z,f~~} 

a 
(3.6) 

From this and (3.4) we obtain the additional conditions (3.1) which de- 
termine the parameters a snd b and express the conditions of finite 
stresses and a smooth joining of the opposite sides of the crack at its 
ends. 

4. General proof of the condition of the finiteness of 
stresses. We shall present now a general proof of the condition of the 
finiteness of stresses. Let us consider some point 0 at the contour of 
a crack (see figure). In the neighborhood of this 
point the distribution of stresses and displace- 
ments can be assumed to be that of plane strain. 
Using the results from 23 1 one csn easily show 
that, generally speaking, for an arbitrary crack 
contour which does not satisfy condition (1.7), the 
distribution of the tearing stresses u in the 
plane of the crack near point 0 and thg distribu- 
tion of displacements v normal to this plane near 
point 0 have, respectively, the form 

au = N ( 2n;;- )+w~)+w”s) (4.1) 
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u = 2(1-~2)v~ 
7CE 

A’ + 0 (S’/” ) (4.2) 

where s is the distance from the point in the medium studied to point 0 
and N is some value which depends on the forces acting and the contour 
of the crack. In all the cases analyzed up to now, the condition of the 
finiteness of stresses was represented by the vanishing of the value N, 
which at the same time can be seen to assure a smooth joining of the 
opposite sides of the crack at its ends. 

Let us vary now the undetermined element, the contour of the crack, 
such that the new contour is represented by a circular arc of some small 
radius R with its center at 0, which lies in the plane of the crack up 
to the intersection with the original contour, and outside the arc it 
would be unchanged. Because of the smallness of the radius R, the dis- 
tribution of the displacements v near every new point of the contour will 
be also of the form (4.21, but s will now be the distance measured from 
this new point. ‘lhus, the distribution of the normal displacements at 
the new part of the crack will be 

v= 2(1--V;p-’ N+O[(‘V’J$_7.)3] 

where r is the distance from point 0 to the point under consideration. 

It can be easily seen that the corresponding variation of the elastic 
potential is equal to* 

R - 

o,vdS = 
(1 - 9) NZ R-r 

?GE w- xr& = (I - “? N2 &‘$ 
r 4xE (4.41 

0 

where 6s is the variation of the crack area. Obviously, condition (1.7), 
i.e. S,W = 0, is satisfiedif and only ifN = 0. But when N = 0, as can 
be seen from Formulas (4.1) and (4.21, the finiteness of the stresses is 
assure,d at the same time as the smoothness of the joining of the opposite 
sides of the crack at point 0. Thus, in the general case, from (1.7) 
follows the finiteness of stresses and the smoothness of the joining of 
the opposite sides of the crack at its ends. 

Let us remark once more that the hypothetical form of this condition 
was first stated by Khristianovich. Note also that in connection with 

l The corresponding calculation for the plane case in connection with. 

the condition of the finiteness of stresses was carried out in a paper 

by Irwin 14 1. 
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the mechanical statement of the problem the assertion of a wedge-shaped 
form of the crack near its end was made by Rebinder even earlier. 

'l'hus, the condition of the finiteness of the stresses at the end of 
the crack and the smooth joining of the opposite sides of the crack at 
its ends was obtained from the fundamental principle of statics - the 
principle of virtual displacements. Because of that, the statements of 
problems in the theory of equilibrium cracks in brittle bodies can be 
limited to two basic hypotheses [ 3 1: the hypothesis on the smallness of 
the end-region of the crack where forces of interaction of the opposite 
sides of the crack depending on the dimensions of the entire crack are 
acting, and the hypothesis on the autonomy of this region (i.e. the 
hypothesis on the independence of the distribution of the normal dis- 
placements in that region for a given material with given conditions re- 
garding the acting forces). 

‘Ihe general proof given here can be applied without any essential 
changes to the contact problem of the theory of elasticity and its 
particular case, the problem of the penetration of an elastic body by 
punches. 

The author is deeply grateful to Ia. B. Zel'dovich for his valuable 
review of this paper. 
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